Root distribution, standing crop biomass and belowground productivity in a semidesert in Mxico

نویسندگان

  • Numa P. Pavón
  • Oscar Briones
چکیده

In a semidesert community in México (Zapotitlán de las Salinas, Puebla) the vertical distribution of roots and root biomass was estimated at 0–100 cm depth on two sampling dates, November 1995 (wet season) and January 1998 (dry season). Root productivity at 7 to 14.5 cm depth was estimated with the in-growth core technique every two months from March 1996 to February 1998. The relationship between environmental factors and seasonal root productivity was analyzed. Finally, we tested the effect of an irrigation equivalent to 20 mm of rain on root production. Seventy four percent of the total number of roots were found at 0-40 cm depth. Very fine roots (<1 mm diameter) were found throughout the soil profile (0-100 cm). In contrast, fine roots (1-3 mm diameter) were found only from 0–90 cm depth, and coarse roots (>3 mm diameter) from 0–60 cm depth. The root biomass was 971.5 g m−2 (S.D. = 557.39), the very fine and fine roots representing 62.9% of the total. Total root productivity, as estimated with the ingrowth core technique, was 0.031 Mg ha−1 over the dry season and 0.315 Mg ha−1 over the wet season. Only very fine roots were obtained at all sampling dates. Rainfall was significantly correlated with very fine root production. The difference between fine root production in non-watered (0.054 g m−2) and watered (0.429 g m−2) treatments was significant. The last value was the same as that predicted for a rain of 20 mm, according to the exponential model describing the relation between the production of very fine roots and rainfall at the site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root Herbivores Drive Changes to Plant Primary Chemistry, but Root Loss Is Mitigated under Elevated Atmospheric CO2

Above- and belowground herbivory represents a major challenge to crop productivity and sustainable agriculture worldwide. How this threat from multiple herbivore pests will change under anthropogenic climate change, via altered trophic interactions and plant response traits, is key to understanding future crop resistance to herbivory. In this study, we hypothesized that atmospheric carbon enric...

متن کامل

Multifunctional agriculture: Root and nitrogen dynamics in two alternative systems

The Corn Belt of the Midwestern United States is among the most productive grainproducing regions of the world. Yet the development of the Corn Belt has been accompanied by a suite of environmental concerns. Alternative systems have been proposed that remediate environmental quality while relying on fewer external inputs (e.g., synthetic nitrogen fertilizer) than dominate cropping systems of co...

متن کامل

Ectomycorrhizal Colonization, Biomass, and Production in a Regenerating Scrub Oak Forest in Response to Elevated C02

The effects of C02 elevation on the dynamics of fine root (FR) mass and ectomycorrhizal (EM) mass and colonization were studied in situ in a Florida scrub oak system over four years of postfire regeneration. Soil cores were taken at five dates and sorted to assess the standing crop of ectomycorrhizal and fine roots. We used ingrowth bags to estimate the effects of elevated C02 on production of ...

متن کامل

Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment

The relationship between plant diversity and productivity in grasslands could depend, partly, on how diversity affects vertical distributions of root biomass in soil; yet, no prior study has evaluated the links among diversity, root depth distributions, and productivity in a long-term experiment. We used data from a 12-year experiment to ask how plant species richness and composition influenced...

متن کامل

Herbivore Effects on Plant and Nitrogen Dynamics in Oak Savanna

Herbivores can often control plant dynamics by mediating positive feedbacks in plant species’ influence on nutrient cycling. In a 7-yr field experiment in a nitrogenlimited Minnesota oak savanna, we tested whether herbivores accelerated or decelerated nitrogen (N) cycling through their effects on plants. We measured effects of excluding insect (primarily Orthoptera and Homoptera) and mammalian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000